Lead Clinical and Preclinical Antimalarial Drugs Can Significantly Reduce Sporozoite Transmission to Vertebrate Populations
نویسندگان
چکیده
To achieve malarial elimination, we must employ interventions that reduce the exposure of human populations to infectious mosquitoes. To this end, numerous antimalarial drugs are under assessment in a variety of transmission-blocking assays which fail to measure the single crucial criteria of a successful intervention, namely impact on case incidence within a vertebrate population (reduction in reproductive number/effect size). Consequently, any reduction in new infections due to drug treatment (and how this may be influenced by differing transmission settings) is not currently examined, limiting the translation of any findings. We describe the use of a laboratory population model to assess how individual antimalarial drugs can impact the number of secondary Plasmodium berghei infections over a cycle of transmission. We examine the impact of multiple clinical and preclinical drugs on both insect and vertebrate populations at multiple transmission settings. Both primaquine (>6 mg/kg of body weight) and NITD609 (8.1 mg/kg) have significant impacts across multiple transmission settings, but artemether and lumefantrine (57 and 11.8 mg/kg), OZ439 (6.5 mg/kg), and primaquine (<1.25 mg/kg) demonstrated potent efficacy only at lower-transmission settings. While directly demonstrating the impact of antimalarial drug treatment on vertebrate populations, we additionally calculate effect size for each treatment, allowing for head-to-head comparison of the potential impact of individual drugs within epidemiologically relevant settings, supporting their usage within elimination campaigns.
منابع مشابه
CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts.
The malarial parasite has two hosts in its life cycle, a vertebrate and a mosquito. We report here that malarial invasion into these hosts is mediated by a protein, designated cell-traversal protein for ookinetes and sporozoites (CelTOS), which is localized to micronemes that are organelles for parasite invasive motility. Targeted disruption of the CelTOS gene in Plasmodium berghei reduced para...
متن کاملIntroducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review
Antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (CQ) and amodiaquine (AQ), have been used to prevent and treat malaria for many years. The importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. In recent years, with the spread of parasite resistance to CQ and cross-resist...
متن کاملAlternatives to currently used antimalarial drugs: in search of a magic bullet
Malaria is a major cause of morbidity and mortality in many African countries and parts of Asia and South America. Novel approaches to combating the disease have emerged in recent years and several drug candidates are now being tested clinically. However, it is long before these novel drugs can hit the market, especially due to a scarcity of safety and efficacy data.To reduce the malaria burden...
متن کاملMass campaigns with antimalarial drugs: a modelling comparison of artemether-lumefantrine and DHA-piperaquine with and without primaquine as tools for malaria control and elimination
BACKGROUND Antimalarial drugs are a powerful tool for malaria control and elimination. Artemisinin-based combination therapies (ACTs) can reduce transmission when widely distributed in a campaign setting. Modelling mass antimalarial campaigns can elucidate how to most effectively deploy drug-based interventions and quantitatively compare the effects of cure, prophylaxis, and transmission-blocki...
متن کاملStatus of antimalarial drugs under development.
Despite the urgent need of a new antimalarial drugs, particularly those against multiresistant falciparum malaria, only a limited number of drugs are now at an advanced stage of preclinical or clinical development. They include artemisinin derivatives, pyronaridine and benflumetol (all originally developed in China), as well as new antifolate combinations, the hydroxynaphoquinone atovaquone whi...
متن کامل